Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression.

نویسندگان

  • Joanne Trgovcich
  • Colleen Cebulla
  • Pete Zimmerman
  • Daniel D Sedmak
چکیده

The human cytomegalovirus tegument protein pp71 is the product of the UL82 gene. Roles for pp71 in stimulating gene transcription, increasing infectivity of viral DNA, and the degradation of retinoblastoma family proteins have been described. Here we report a novel function for pp71 in limiting accumulation of cell surface major histocompatibility complex (MHC) class I complexes. MHC molecules were analyzed in glioblastoma cells exposed to a replication-defective adenovirus expressing UL82 (Adpp71) or after transient transfection of the UL82 gene. Accumulation of cell surface MHC class I levels diminished in a specific and dose-dependent manner after exposure to Adpp71 but not after exposure to an adenovirus expressing beta-galactosidase (Adbeta gal). UL82 expression did not interfere with accumulation of either MHC class I heavy-chain transcript or protein, nor did UL82 expression correlate with markers of apoptosis. Rather, UL82 expression correlated with an increased proportion of MHC class I molecules exhibiting sensitivity to endoglycosidase H treatment. Finally, we show that, in cells infected with recombinant virus strain missing all of the unique short region MHC class I evasion genes, disruption of UL82 expression by short, interfering RNAs led to increased accumulation of cell surface MHC class I complexes. These findings support a novel role for HCMV pp71 in disruption of the MHC class I antigen presentation pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent cytomegalovirus down-regulates major histocompatibility complex class II expression on myeloid progenitors.

Following primary infection, human cytomegalovirus (CMV) establishes a lifelong latent infection in bone marrow-derived myeloid lineage cells. Although downmodulation of major histocompatibility complex (MHC) class I and class II protein levels occurs during active viral replication, little is known about the modulation of these proteins during latent infection. When analyzed by flow cytometry,...

متن کامل

Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription.

Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-recept...

متن کامل

Down-regulation of surface major histocompatibility complex class I by guinea pig cytomegalovirus.

Live attenuated strains of human cytomegalovirus are under development as vaccines to prevent birth defects resulting from congenital infections. These strains encode four proteins that inhibit surface expression of MHC class I, presumably to evade cytotoxic T-cell recognition and, perhaps, attenuate induction of immunity. To initiate studies of the role of class I down-regulation on congenital...

متن کامل

Endoplasmic reticulum chaperones participate in human cytomegalovirus US2-mediated degradation of class I major histocompatibility complex molecules.

Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a beta-herpesvirus) promotes escape from recognition by CD8+ cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the...

متن کامل

Inactivation of a Defined Active Site in the Mouse 20S Proteasome Complex Enhances Major Histocompatibility Complex Class I Antigen Presentation of a Murine Cytomegalovirus Protein

Proteasomes generate peptides bound by major histocompatibility complex (MHC) class I molecules. Avoiding proteasome inhibitors, which in most cases do not distinguish between individual active sites within the cell, we used a molecular genetic approach that allowed for the first time the in vivo analysis of defined proteasomal active sites with regard to their significance for antigen processi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 80 2  شماره 

صفحات  -

تاریخ انتشار 2006